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Self-incompatibility and other pollen–pistil interactions
Sheila McCormick

Self-incompatibility allows plants to recognize and reject
pollen from the same plant, thereby reducing inbreeding.
Although in most cases self-incompatibility is controlled by
a single genetic locus, recent results show that surprisingly
complex signal transduction pathways and many players are
involved in pollen recognition and rejection.
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Introduction
Pollen–pistil interactions provide an excellent system for
studying cell–cell interactions. Although most work has
emphasized the pollen rejection events in self-incompat-
ibility, understanding the interactions during compatible
(successful) pollinations is of equal importance and will
increase our understanding of self-incompatibility.

Self-incompatibility is usually encoded by a single,
multiallelic S locus that is composed of one or more
male and/or female expressed genes. Allelic differences
in the proteins encoded by these genes are believed
to be the basis for the recognition of self or non-self
pollen. The goal in all studies of self-incompatibility is
to identify the protein components on each side (male
and female) of the interaction. Surprisingly, this has not
yet been achieved for any self-incompatibility system. In
this review, I summarize recent work in the fields of
self-incompatibility and pollen tube growth, and point out
promising directions for future work.

Self-incompatibility
Self-incompatibility has been extensively reviewed; most
reviews have emphasized the sporophytic self-incom-
patibility system [1,2] exemplified by Brassica species,
and the gametophytic self-incompatibility system [3]
exemplified by Solanaceous species such as tobacco and
petunia (Figure 1). Other self-incompatibility systems,
however, have also been studied and have provided
useful advances or insights [4]. For example, in the
gametophytic self-incompatibility system in poppy, where
the gene encoding the style glycoprotein has been cloned,
some information is available about the presumed signal

transduction pathway that occurs on the pollen side [5,6].
In the grasses, self-incompatibility is gametophytic but
two unlinked loci (S and Z) are required; one gene from
the S locus has been cloned [7].

Gametophytic self-incompatibility and RNases
In the Solanaceae (and Roseaceae) the S locus encodes
polymorphic RNases that are secreted into the style
matrix. RNase activity is required for the incompatible
interaction. The most favored model (the cytotoxic model)
[3] proposes that the RNase is taken up by the pollen
tubes and that, because ribosomal RNA is not synthesized
in pollen tubes, the RNase degrades the existing rRNA,
thereby causing protein synthesis and pollen tube growth
to be inhibited in the upper part of the style. In a recent,
provocative paper [8••], however, the results of grafting
experiments between incompatible and compatible styles
of Nicotiana alata were used to challenge some of the
underlying premises of this model. This work showed
that pollen tubes are not necessarily arrested in the upper
third of the style and that incompatible pollen tubes can
be inhibited at various times during pollen tube growth
and at different locations along the style. Furthermore, at
least some of the arrested pollen tubes in an incompatible
style could re-initiate growth if the incompatible style was
grafted to a compatible style. These results conflict with
the idea that RNA synthesis is irretrievably blocked by the
uptake of the RNase.

Looking for the pollen S component
What is the factor from the pollen side of the interaction?
Although the S-RNase is very weakly expressed in
anthers [9], it is generally believed that the pollen S
component is not also the RNase, but a closely linked
gene. Evidence in support of this idea comes from analysis
of a self-compatible mutation in Japanese pear, in which
the pistil self-incompatibility response was lost. In this
mutation the S-RNase gene was deleted from the genome,
but the pollen S component was still functional [10].

The Solanaceae S-RNases of different alleles have both
highly variable and conserved domains. To identify the
recognition domain for the pollen S component, chimeras
between two different S-RNases of N. alata (Sa2 and
Sc10) were constructed [11]. None of the resulting
transgenic plants, however, rejected either Sa2 or Sc10
pollen. These results suggested that there is no single
allele specificity domain, but rather that the whole RNase
moiety determines specificity. Perhaps these N. alata
RNases were too different from each other. Exciting work
[12••] with Solanum chacoense has now shown that allelic
specificity can be changed, and that the hypervariable
region is necessary and sufficient. In S. chacoense the S11
and S13 RNases differ by only four amino acids in the
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Figure 1
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Genetics of self-incompatibility. (a) In gametophytic self-incompatibility (GSI) in the Solanaceae, pollen can germinate and grow all the way
through the style if the genotype of the pollen does not match the genotype of the female parent. Thus S2 and S3 pollen grains are arrested
in the upper part of the style, but the S1 pollen tube is able to grow the length of the style. (b) In sporophytic self-incompatibility (SSI) in the
Brassicaceae, the pollen determinants are sporophytically expressed and are presumed to be deposited on the pollen coat by the male parent.
Pollen grains can germinate only if they are of a completely different genotype from the female parent. In the pistil at the left, the genotype of the
S2 pollen grain does not match either of the pistil alleles (S1 and S3), but it carries determinants derived from the male parent (S1 and S2) and,
therefore, cannot germinate. In contrast, the pistil at the right is of a completely different genotype than that of the pollen grains (S3 and S4 as
opposed to S1 and S2), thus enabling the pollen to germinate.

hypervariable regions. Transgenic plants with chimeric
gene constructs in which the S11 RNase had those four
amino acids changed to those in the S13 RNase were
converted to the S13 phenotype (the plants arrested S13
pollen and accepted S11 pollen).

To determine if the S-RNase interacts with a pollen-
expressed S allele product, a single amino acid change
in the S3 RNase that inactivated the RNase activity
was introduced into S2/S3 plants of Petunia inflata [13••].
Three plants expressed the mutant S3 RNase at a level
equivalent to the endogenous S2 and S3 RNases. In
these plants, the expression of the mutant S3 RNase
inhibited rejection of S3 pollen but had no such effect
on S2 pollen. These results suggest that the mutant S3
RNase is still recognized by the pollen S component and
support the idea that the mutant S3 RNase competes

with the wild-type S3 RNase for binding to the pollen S
component.

Because an S-RNase is capable of degrading pollen
RNA both from the same and from different alleles,
the difference that determines allele-specificity in RNA
degradation must lie in the entry of the RNase into the
pollen tube or in the access to the RNA once in the
pollen tube. There are two theories for the mechanism of
allele-specific RNase inhibition [3]. One holds that both
S2 and S3 RNases can enter the pollen grain, but that
there is an inhibitor in the pollen tube cytoplasm that
inhibits all non-self RNases but not the self RNase. The
other holds that there is an allele-specific receptor on the
pollen tube surface that only allows the self RNase to
enter. There is genetic evidence from tetraploid plants
that is consistent with the inhibitor model (reviewed in
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[4]), but the receptor model is more attractive because it
is simpler. The inhibitor model requires that the pollen
tube be able to inhibit all the different S-RNases that it
might encounter — except for the RNase from the same S
allele. An interesting test of these models would involve
specific labeling of the S2, S3 and mutant S3 RNases in
some way, incubating them with in vitro grown pollen
tubes from different S genotypes, and measuring their
transport into or binding to pollen tubes. For example, it is
now possible to image individual green fluorescent protein
(GFP)-tagged molecules [14] and this method could be
applied to monitor expression of individual RNAases. It
has recently has been suggested that [13••] the mutant
S3 RNase and its dominant-negative activity in transgenic
plants will be useful in identifying the pollen partner.

Other gametophytic self-incompatibility
systems
In poppy, the style glycoprotein encoded by the S locus
has no similarity to any sequence in the databases.
There is evidence that the S-protein interacts with a
pollen protein, and that changes in the phosphorylation
state of pollen proteins occur during the incompatible
reaction. Thus far, however, no allelic specificity for these
interactions has been shown [5,6]. In contrast to all other
self-incompatibility systems that have been studied at the
molecular level, the gene encoding the pollen component
has been cloned in the grass Phalaris coerulescens [7].
This predicted pollen S gene product is composed of
two domains, a presumed allele specificity domain and a
thioredoxin catalytic domain. Analysis of a self-compatible

Figure 2
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The RNase-receptor model for allele-specific inhibition of pollen tube growth. The schematic shows that S1 pollen is able to grow through an
S2S3 style because it has no receptors for the S2 or S3 RNases that are present in the style matrix. In contrast, germination of the S2 and S3
pollen grains is slowed or arrested because the S2 and S3 RNases are internalized by the S2 and S3 pollen tubes, respectively.
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mutant suggests that the thioredoxin activity is essential
for the self-incompatibility response [7], but the role of
thioredoxin in the self-incompatibility response is not
known. Attempts to identify similar genes in other grass
species were not successful using the presumed allele
specificity domain as a probe, although sequences in
other grasses could be identified using PCR and primers
designed against conserved regions of the thioredoxin
domain [15]. Until these thioredoxin sequences are shown
to be contiguous with S-allele specificity domains it is
premature to conclude that the S-allele specificity domain
exists in other grasses.

Sporophytic self-incompatibility
The sporophytically controlled S locus (or haplotype) in
Brassica species encodes several genes involved in the
self-incompatibility response (Figure 3); these include a
secreted glycoprotein (SLG; S-locus glycoprotein) and a
transmembrane receptor kinase (SRK; S-receptor kinase)
whose extracellular domain is similar to the SLG. Both
the extracellular domain of the SRK and the SLG are
polymorphic between haplotypes, which is in keeping
with the prediction for self-incompatibility determinants
[1]. It was deduced that the kinase activity was required
for the self-incompatibility response because two self-com-
patible lines had deletions that prevented expression of
an active kinase [16,17]. In an attempt to demonstrate
this requirement, a chimeric kinase was introduced into
the self-compatible Sf1 line. Unfortunately the chimeric
kinase was only weakly expressed and it could not restore
self-incompatibility [18•]. Thus there is as yet no direct
proof of a requirement for SRK. In some haplotypes
downregulation of SLG is correlated with a loss of
self-incompatibility [1]. There are also cases, however,
where self-compatible haplotypes express high levels of
SLG and where self-incompatible haplotypes have nearly
undetectable levels of SLG [19]. Thus it is still not
proven that SLG is important for self-incompatibility. In
addition, there is evidence in at least one haplotype for
a membrane-anchored SLG [1], and in other haplotypes,
for a secreted glycoprotein (eSRK) that is an alternatively
spliced product of the SRK gene [20]. The most widely
discussed model for sporophytic self-incompatibility [1,2]
predicts that the pollen ligand somehow interacts with
SRK to initiate a signal transduction chain in the stigma
papillar cell, thus preventing self pollen from growing a
pollen tube. The roles played by SLG and eSRK in this
scheme are still not clear.

Have the SLG and SRK genes of a haplotype co-evolved?
Sequence comparisons of the SLG and SRK genes from S2
(a class I haplotype) and S6 (a class II haplotype) supported
this idea. These sequence comparisons had shown that the
SLG and SRK sequences were more similar when com-
pared within a haplotype than when compared between
haplotypes [1]. The previous comparisons, however, might
have overemphasized the differences between haplotypes
(as pointed out in [21••]). There are only a few class II

haplotypes; they have a weak self-incompatibility response
and are considered pollen recessive, and are thus quite
different from class I haplotypes. Sequences from the SLG
genes from 31 class I haplotypes were analyzed [21••].
Surprisingly, two different S haplotypes had identical
sequences in the hypervariable region of the SLG, the part
believed to be important for the S specificity. Secondly,
the SLG sequence was not necessarily most closely related
to the SRK of the same haplotype. In order to reconcile
these contradictory findings with the model that holds that
both SLG and SRK of a haplotype are required for the
self-incompatibility response, it was proposed that perhaps
the pollen ligand interacts with both SLG and SRK, but
at different sites. It is also possible that these results
support the idea that SLG is not a critical element for the
self-incompatibility response. Further analysis of SLG and
SRK sequences from a larger number of haplotypes might
help resolve this controversy.

Recognition, adhesion and hydration
As in the gametophytic self-incompatibility systems in
the Solanaceae, attempts to switch allelic specificity
have been problematic in sporophytic self-incompatibil-
ity systems. For example, mutant forms of SRK and
SLG that were predicted to act as dominant-negative
alleles were introduced into B. oleracea [18•]. Although
self-incompatibility breakdown was found in two cases, it
was not due to expression of a transgene, but rather to
homology-dependent gene silencing of the endogenous S
haplotype genes.

Despite the problems with transgenic analyses with the S
haplotype genes, antisense constructs of the related but
unlinked gene, SLR1, demonstrated that this protein is
not required for the self-incompatibility response or for
compatible crosses [22]. In more recent studies, however,
the adhesive forces between pollen and stigma papillar
cells in SLR1 antisense plants and in compatible and
incompatible crosses were measured [23•,24•]. These
studies showed that the pollen coat and SLR1 (and
perhaps SLG) play a role during the second phase of
pollen adhesion, that is to say, the point at which the pollen
coat and stigma papillar cell surface components coalesce
and when water transfer from the stigma to the pollen
grain occurs [25].

In B. campestris, a recessive mutation (mod) in an unlinked
modifier gene (MOD) eliminates the self-incompatibility
response in the stigma. MOD encodes an aquaporin
[26•]. Because pollen hydration of self-incompatible pollen
grains can occur in the mod mutant, it was hypothesized
that the lack of the aquaporin would block a signal
transduction pathway that normally leads to pollen tube
arrest in a functional self-incompatibility system. This is
counter-intuitive, because it means that hydration is the
default state. To explain these results, it was proposed
that self pollen triggers the SRK response, that the kinase
then activates MOD channels, thereby preventing the flow
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Schematic of contact between a Brassica stigma papillar cell and an incompatible pollen grain. Some of the protein players involved in pollen
adhesion, recognition and hydration are shown. It is believed that the SRK is phosphorylated after interaction with a pollen ligand, and that this
triggers a signal transduction pathway, somehow involving the MOD water channel, eventually leading to a block in pollen hydration. SRK may
bind the pollen ligand in conjunction with SLG and/or eSRK. Pollen coat proteins are likely candidates for the pollen ligand. SLR1 and pollen
coat components are involved in adhesion.

of water from the stigma into the pollen grain and thus
preventing pollen hydration. According to this hypothesis,
therefore, in the mod mutant, SRK would be activated but
the MOD channel would not. It is also possible that the
MOD channel regulates the movement of small molecules
between the pollen coat and the stigma, and that these
molecules might alternatively inhibit or promote pollen
hydration.

Searching for the ligand
The ligand for the Brassica SRK should be anther-
expressed, be linked to the SLG/SRK chromosomal
region, and have sequence polymorphisms in different S
haplotypes. An anther-expressed gene (SLA, for S-locus
anther) that was isolated from the S2 haplotype of B.
oleracea seemed to fit these criteria [27]. Furthermore,
because of a retrotransposon insertion, there was no
SLA transcript present in a compatible strain carrying
an S2-like haplotype (in B. napus). Lastly, because
sequences homologous to that of SLA could not be
found in other S haplotypes, it was suggested that SLA
is highly polymorphic and, therefore, might encode the

pollen ligand. Contrary to this suggestion, however, SLA
sequences nearly identical to the S2 sequence have now
been characterized from other B. oleracea haplotypes [28•].
Furthermore, the retrotransposon disruption of SLA is no
longer correlated with self-incompatibility, because it is
found in both compatible and incompatible haplotypes
of B. oleracea. In conclusion, expression of SLA is not
required for self-incompatibility [28•].

In similar attempts to identify the S ligand, the chromo-
somal region between the SRK and SLG of the S-910
haplotype in B. napus was chosen for cloning [29•]. In
this haplotype the SRK and SLG genes are separated
by only about 25 kb, while in other S haplotypes the
distance between SLG and SRK can be as much as 250 kb
[30•]. A cDNA library was screened with probes derived
from the S-910 haplotype and two anther-expressed genes
(SLL1 and SLL2) were identified. The SLL2 gene is a
member of a multigene family, and other family members
map elsewhere in the genome. SLL2 is expressed in
both self-incompatible and self-compatible lines, making
it a less likely candidate for the pollen ligand. The
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SLL1 gene would only be capable of encoding two very
small peptides (2 and 3 kDa), but intriguingly SLL1 is
only expressed in self-incompatible lines. When SLL1
homologous sequences were cloned and sequenced from
several different S-haplotypes, however, the sequences
were identical to SLL1 from the S-910 haplotype [30]. As
for the SLA gene discussed above, this sequence identity
is not predicted for the pollen ligand.

The S-locus has been mapped [31] but neither the
physical limits of the locus nor the true frequency of
recombination within the locus is known [30•]. Without
this information, researchers cannot know for sure if they
have searched the correct regions of the genome for the
pollen S component. It will be very important to obtain a
more complete physical and molecular map for the S locus
region.

In contrast to a map-based approach to identify the
pollen S component, an extremely interesting approach
has been taken by Stephenson et al. [32••]. In this work,
pollen coatings from different S haplotypes were isolated
and, by micromanipulation, coating from one haplotype
was placed on a stigma papillar cell of the same or
different haplotype, before placing single pollen grains of
the same or different haplotypes on the stigma papillar
cell. Significant and haplotype-specific changes in pollen
hydration and germination were observed. For example,
self pollen coating could inhibit the growth of non-self
pollen, and non-self pollen coating could allow growth
of self pollen. These results suggest that the pollen
coat contains compounds that can be transferred to other
pollen grains and that this transfer can mimic changes in
allelic specificity. An enriched fraction with these activities
contained proteins of the PCP (pollen coat protein) class
[33,34]. Previously, a PCP was shown to interact in vitro
with SLG [33], but no allelic specificity was found for this
interaction. Because PCPs are encoded by a multigene
family [35], however, this finding does not eliminate
the possibility that a PCP is the pollen ligand. Further
characterization should allow cloning of the genes that
encode the PCPs present in the active fractions isolated
by Stephenson et al. [32••]; it will be most important to
determine if these genes map to the S locus.

Pollen tube adhesion and growth
In the past year several technical advances have been
made which will facilitate the molecular dissection of
pollen tube growth. It has long been known that pollen
tubes grow faster in vivo through the style than in in
vitro germination medium. In order to determine why,
an adhesion assay for in vitro pollen tube growth was
developed for lily, a plant with a hollow style [36•]. In
this assay, exudate from styles is applied to nitro-cellulose
membranes, to which it adheres. Pollen tube tips adhere
to this matrix of exudate and grow faster than in liquid
germination medium; interestingly, style exudate did not
improve pollen tube growth rate if added to liquid

medium. The style exudate is rich in arabinogalactan
proteins, and lily pollen tubes adhered most strongly
in regions of the nitro-cellulose membrane that were
enriched for arabinogalactan proteins. More evidence
for the importance of arabinogalactan proteins in pollen
tube growth comes from antisense or sense suppression
experiments with the TTS (transmitting tissue-specific)
gene of tobacco, which encodes an arabinogalactan protein.
Transgenic plants with reduced expression of TTS showed
reduced pollen tube growth rates [37]. It will be important
to test if the adhesion assay developed for lily can be
adapted to other plants.

An allergen from maize pollen was shown to have cell-wall-
loosening activity characteristic of expansins [38]. The
allergen protein is released from the wall of ungerminated
pollen and might, therefore, play a role in loosening the
tightly adhering cell walls of the stigma to allow initial
pollen tube entry into the female tissue. Whether pollen
tubes have easily released expansin was not tested, so it
not clear whether pollen-derived expansins might also play
a role during further pollen tube growth.

Pollen tube growth direction can be manipulated by
asymmetrically modifying calcium levels in the tip. In
the most recent work [39•], caged calcium or calcium
chelators were released by photoactivation in discrete
regions of the growing pollen tube; the point of highest
calcium concentration determined the direction of growth.
Malho and Trewavas [39•] speculate that ion channels
in the tip of the pollen tube might be asymmetrically
activated by interactions with arabinogalactan proteins or
other components of the style matrix. In general, the
importance of individual arabinogalactan proteins (AGPs)
has been difficult to assess, because AGPs are highly
glycosylated and resolve poorly in standard gel systems. A
newly developed SDS-agarose gel procedure for separation
of plasma-membrane-associated AGPs proteins should
facilitate such experiments [40].

How is pollen tube growth initiated? Although in some
species (e.g. maize) pollen grains have only one aperture,
in most species pollen grains have more than one. Are all
apertures equally competent to form pollen tubes? Two
recent papers [41•,42•] describe Arabidopsis mutants which
are relevant to this point. The tetraspore (four alleles) and
stud (three alleles) mutants have similar phenotypes, map
to the same region of chromosome 3, and are thus likely to
be allelic. These mutants are primarily defective in meiotic
cytokinesis, but they also exhibit several other phenotypes
later during pollen development. For example, although
the pollen grains in stud and tetraspore are formed from a
coenocytic tetrad, and in principle multiple pollen tubes
might be expected, only one pollen tube is formed.
Another Arabidopsis mutant of interest in this context is
sidecar pollen [43•]. In homozygous sidecar pollen plants,
about 30% of the pollen grains have an extra vegetative
cell, so that the exine encloses two vegetative cells (one
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of which also carries two sperm). In these grains, either
of the two vegetative cells can form a pollen tube, but
no two-tubed grains were ever seen. The stud and scp
pollen tube growth results were used to suggest [41•] that
pollen tube formation must be determined at the level
of the whole grain and that only one tube can form. We
have frequently observed two-tubed pollen grains after
in vitro germination of tomato, and occasionally after in
vivo germination (J Muschietti, Y Eyal, S McCormick,
unpublished data). It might be interesting to test if all the
apertures in tomato and Arabidopsis are equally capable
of forming tubes, perhaps by measuring or manipulating
calcium levels. One obvious difference between the two
species is that pollen of Arabidopsis has already undergone
the second mitotic division, whereas tomato pollen has not.
How or if the presence of sperm cells would restrict pollen
to forming only one tube is not clear.

Conclusions
The past year has been frustrating because of the
continued elusiveness of the pollen S component of
the most studied self-incompatibility systems, but recent
results and new experimental approaches offer hope.
Because of the extensive rearrangements at the Brassica
S haplotypes, it is important to define the physical limits
of the S locus before additional attempts are made to
locate the pollen S component via map-based approaches.
The results suggesting that pollen coat compounds can
mimic specificity changes should certainly be pursued. In
Petunia, the best hope for identifying the pollen partner
for the RNase lies with the mutant S3 RNase and its use
in biochemical or genetic screens. The roles of adhesive
molecules in pollen tube growth can now be systematically
tested using the assay for pollen tube adhesion.
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